general info about Theriologia Ukrainica

Theriologia Ukrainica
(former Proceedings of the Theriological School)

ISSN 2616-7379 (print) ISSN 2617-1120 (online)

2019 Vol. 18 Contents of volume >>>


download pdfTytar, V., M. Hammer, T. Asykulov. 2019. Distribution modeling of the long-tailed marmot (Marmota caudata) for objectives of directing field surveys and ground validation of the snow leopard (Panthera uncia) habitat quality. Theriologia Ukrainica, 18: 101107.


 

title

Distribution modeling of the long-tailed marmot (Marmota caudata) for objectives of directing field surveys and ground validation of the snow leopard (Panthera uncia) habitat quality

author(s)

Volodymyr Tytar, Matthias Hammer, Tolkunbek Asykulov

affiliation

Institute of Zoology NAS of Ukraine (Kyiv, Ukraine),
Biosphere Expeditions Deutschland (Hoechberg, Germany),
Kyrgyz National University (Bishkek, Republic of Kyrgyzstan),
Der Naturschutzbund Deutschland e. V. NABU (Bishkek, Republic of Kyrgyzstan)

bibliography

Theriologia Ukrainica. 2019. Vol. 18: 101107.

DOI

http://doi.org/10.15407/pts2019.18.101

   

language

English, with Ukrainian summary, titles of tables, captures to figs

abstract

Marmots form a part of the diet of some endangered species such as the snow leopard, therefore the conservation and management of marmots are crucial to the interest of carnivores of high altitude (Ahmed et al., 2016). Considering this, within a Snow Leopard Project run by Biosphere Expeditions and NABU (Kyrgyzstan), surveys were carried out in summers of 2014-2017 to assess the distribution of Long-tailed Marmots (M arm ora caudata) in an area centered around the Karakol Mountain Pass (polygon centroid 74.83E, 42.37N). The presence of occupied marmot burrows was recorded using the general location given by a grid, the code of which was displayed in a GPS (Mazzolli, Hammer, 2013). Environmental factors that may affect the spatial distribution of burrow systems were considered: land surface temperature (LST) in winter and summer, summer normalized difference vegetation index (NDVI), a Digital Elevation Model (DEM), and soil type data (Lu et al., 2016). The relationship between environmental factors and burrow records was analyzed using ecological niche models (M axenf) to predict the distributions of marmot burrows. The models performed well with average test AUC values of 0.939. The contribution orders of the variables in the models were summer NDVI and LST, soil type, winter LST, and DEM. The distribution of the suitable areas was largely (up to 38% permutation importance) affected by summer NDVI. NDVI is an indicator of the feeding conditions of marmots and most of the records were distributed in areas with NDVI in summer ranging from 0.5 to 0.7. According to the prediction maps, suitable marmot habitat (>0.5 predicted probabilities of occurrence) can occupy up to 40% of study area. These maps are used to direct sampling efforts to areas on the landscape that tend to have greater predicted probabilities of occurrence and accomplish ground validation of Snow Leopard habitat quality.

keywords

long-tailed marmot, the snow leopard, endangered species, distribution modeling habitat quality.

   

references

Bellis, L. M., A. M. Pidgeon, V. C. Radeloff, V. StLouis, J. L. Navarro, M. B. Martella. 2008. Modeling habitat suitability for Greater Rheas based on satellite image texture. Ecological Applications, 18 (8): 19561966.
Conrad, O., B. Bechtel, M. Bock, H. Dietrich, E. Fischer, L. Gerlitz, J. Wehberg, V. Wichmann, J. Bohner. 2015. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development Discussions, 8 (2): 22712312.
Cruz-Cardenas, G., L., J. L. Lopez-Mata, L. Villasenor, E. Ortiz. 2014. Potential species distribution modeling and the use of principal component analysis as predictor variables. Revista Mexicana de Biodiversidad, 85 (1): 189199.
Elith, J., C. H. Graham, R. P. Anderson, M. Dudik, S. Ferrier, A. Guisan, R. J. Hijmans, F. Huettmann, J. R. Leathwick, A. Lehmann, J. Li, L. G. Lohmann, B. A. Loiselle, G. Manion., C. Moritz, M. Nakamura, Y. Nakazawa, J. M. Overton, A. T. Peterson, S. J. Phillips, K. Richardson, R. Scachetti-Pereira, R. E. Schapire, J. Soberon, S. Williams, M. Wisz, N. E. Zimmermann. 2006. Novel methods improve prediction of species distributions from occurrence data. Ecography, 29 (2): 129151.
Fedosenko, A. K., D. A. Blank. 2001. Capra sibirica. Mammalian Species, No. 675: 113.
Hijmans, R. J., S.E. Cameron, J. L. Parra, P. G. Jones, A. Jarvis. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25 (15): 19651978.
Huang, C., W. L. Yang, H. Collin, G. Zylstra. 2002. Derivation of a tasselled cap transformation based on Landsat 7 at-satellite reflectance. International Journal of Remote Sensing, 23 (8): 17411748.
Hutchinson, G. E. 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, No. 22: 415427.
IUCN... 2017. The IUCN Red List of Threatened Species. Version 2017-3. <http://www.iucnredlist.org>. Downloaded on 05 May 2018.
Kauth, R. J., G. S. Thomas. 1976. The Tasselled Cap a graphic description of the spectral-temporal development of agricultural crops as seen by LANDSAT. LARS Symposia. Paper 159.
Lyngdoh, S., S. Shrotriya, S. P. Goyal, H. Clements, M. W. Hayward, B. Habib. 2014. Prey preferences of the snow leopard (Panthera uncia): regional diet specificity holds global significance for conservation. PLoS ONE, 9 (2): e88349.
Marzluff, J. M., K. Ewing. 2001. Restoration of fragmented landscapes for the conservation of birds: a general framework and specific recommendations for urbanizing landscapes. Restoration Ecology, 9 (3): 280292.
Philipson, P., T. Lindell. 2003. Can coral reefs be monitored from space? AMBIO: A Journal of the Human Environment, 32 (8): 586593.
Phillips, S. J., R. P. Anderson, R. E. Schapire. 2006. Maximum entropy modelling of species geographic distributions. Ecological Modeling, 190 (34): 231259.
Phillips, S. J., M. Dudik. 2008. Modelling of species distributions with MAXENT: new extensions and a comprehensive evaluation. Ecography, 31 (2): 161175.
Schweiger, A. K., M. Schutz, P. Anderwald, M. E. Schaepman, M. Kneubuhler, R. Haller, A. C. Risch. 2015. Foraging ecology of three sympatric ungulate species Behavioural and resource maps indicate differences between chamois, ibex and red deer. Movement Ecology, 3 (6): 112.
Swets, J. 1988. Measuring the accuracy of diagnostic systems. Science, 240 (4857): 12851293.
Wein, J. 2002. Predicting species occurrences: progress, problems, and prospects. In: Scott M. J. et al. (eds). Predicting Species Occurrences. Issues of Accuracy and Scale. Island Press, Washington, 739749.


 


to main page of journal >>>

created: 14.12.2019
updated: 14.12.2019

Locations of visitors to this page