general info about Theriologia Ukrainica

Theriologia Ukrainica

ISSN 2616-7379 (print) • ISSN 2617-1120 (online)

2023 • Vol. 25 • Contents of volume >>>


download pdfZhyla, S. 2023. The elk (Alces alces) at the southern limit of its geographic range: population status in the Central Polissia, wolf predation, and vulnerability to climate warming. Theriologia Ukrainica, 25: 173–186. [In Ukrainian, with English summary]


 

title

The elk (Alces alces) at the southern limit of its geographic range: population status in the Central Polissia, wolf predation, and vulnerability to climate warming

author(s)

Sergiy Zhyla (orcid: 0000-0002-3471-6790)

affiliation

Chornobyl Radiation and Ecological Biosphere Reserve (Ivankiv, Ukraine)

bibliography

Theriologia Ukrainica. 2023. Vol. 25: 173–186.

DOI

http://doi.org/10.53452/TU2514

   

language

Ukrainian, with English summary, titles of tables, captures to figs

abstract

In the latter less hot years after the decline in the number of elk (2019–2020), the stabilisation and increasing trend in the number of this species have been observed throughout the study area. Due to migrations, the winter elk population exceeds the summer one and amounts to 2 individuals/thousand hectares (40 individuals; against 1.3 individuals/1 thousand hectares in summer) in the Polissia Reserve, and 1–6 individuals/1 thousand hectares (940 individuals) in the Chornobyl Reserve. Data on the vulnerability of elk to climate change are presented. In hot weather at different times of the year, elks may show signs of heat stress. In summer, elk can be inactive, and in the leafless period, when chased by wolves, they can get heat stress and die. In the heat of the day, elk choose swamps, waterlogged forests with a dense tree canopy and better cooling, which are comfortable for these ungulates in the face of global warming. Climate change causes marshes to dry up and overgrow, reduces the moisture content of habitats, and worsens the fodder capacity of the land. In case of even partial restoration of lowland marshes in the Chornobyl Biosphere Reserve, the reserves of summer and winter food for elk may increase by 2–3 times. In the Polissia Reserve, in 2011–2013, lowland bogs with bush willows (Salix) were restored on fallow land near the Zholobnytsia drainage system, creating highly productive habitats for the elk, which is a promising measure for different areas of Polissia. Climate warming has led to an increase in the red deer (Cervus elaphus) population and a decrease in the elk population in the Polissia, and if no special measures are taken, these trends will intensify. Outside of protected areas, given the lack of a high legal status for wolves (Canis lupus), a strategy for conserving the elk population and reducing predation mortality in combination with other elk habitat management strategies can be recommended to hunting ground users, including limiting poaching, restoring the natural regime of forest fires in reserves, improving winter provision of branch fodder, reducing the disturbance factor, and introducing a ban on staying in the forest with dogs for berry and mushroom pickers.

keywords

elk, wolf, climate change, predation, Polissia, Ukraine

   

references

Atuo, F. A., T. J. O’Connell. 2017. The landscape of fear as an emergent property of heterogeneity: contrasting patterns of predation risk in grassland ecosystems. Ecology & Evolution, 7 (13): 4782–4793. https://doi.org/10.1002/ece3.3021
Balabukh, V. O., S. M. Zhyla, O. O. Orlov, O. A. Yarem¬chenko. 2013. Biotechnical measures in the Polissia Reserve. In: Vulnerable Ecosystems of the Polissia Nature Reserve and its Environs in the Context of Global Warming: Problems and Solutions. Published by NPP Interservice LLC, Kyiv, 60–63. [In Ukrainian]
Beest, F. M. van, B. Van Moorter, J. M. Milner. 2012. Temperature-mediated habitat use and selection by a heat-sensitive northern ungulate. Animal Behaviour, 84: 723–735. https://doi.org/10.1016/j.anbehav.2012.06.032
Beest F. M. van, J. M. Milner. 2013. Behavioural responses to thermal conditions affect seasonal mass change in a heat-sensitive northern ungulate. PLoS One, 8 (6): e65972. https://doi.org/10.1371/journal.pone.0065972
Borowik, T., M. Ratkiewicz, W. Maślanko, et al. 2020. Too hot to handle: summer space use shift in a cold-adapted ungulate at the edge of its range. Landscape Ecology, 35: 1341–1351. https://doi.org/10.1007/s10980-020-01018-4
Broders, H. G., A. B. Coombs, J. R. McCarron. 2012. Ecothermic responses of moose (Alces alces) to thermoregulatory stress on mainland Nova Scotia. Alces, 48: 53–61.
Campbell, D., G. Swanson, J. Sales. 2004. Comparing the precision and cost-effectiveness of fecal pellet group count methods. Journal of Applied Ecology, 41: 1185–1196. https://doi.org/10.1111/j.0021-8901.2004.00964.x
Cederlund, G., J. Bergqvist, P. Kiellander, R. Gill, J. M. Gaillard, [et al.]. 1998. Managing roe deer and their impact on the environment: maximizing the net benefits to society. In: Duncan, P. & J. D. C. Linell (eds). The European roe deer: the Biology of Success. Scandinavian University Press, Oslo, 337–372.
Cromsigt, J., S. Rensburg, R. Etienne, H. Olff. 2009. Monitoring large herbivore diversity at different scales: comparing direct and indirect methods. Biodiversity and Conservation, 18: 1219–1231. https://doi.org/10.1007/s10531-008-9506-1
Cristescu, B., L. M. Elbroch, T. D. Forrester, M. L. Allen, D. B. Spitz, [et al.]. 2022. Standardizing protocols for determining the cause of mortality in wildlife studies. Ecology and Evolution, 12 (6): e9034. https://doi.org/10.1002/ece3.9034
Domnich, V. I., M. O. Malevanova, I. D. Delegan. 2008. Some reasons for changes in the number of elk in Ukraine in the predator-prey system. Forestry and landscape gardening. Scientific Bulletin. National Forestry University of Ukraine, 18 (7): 55–63. [In Ukrainian]
Dussault, C., J-P. Ouellet, R. Courtois, J. Huot, L. Breton, [et al.] 2004. Behavioural responses of moose to thermal conditions in the boreal forest. Écoscience, 11: 321–328. https://doi.org/10.1080/11956860.2004.11682839
Edelhoff, H., J. Signer, N. Balkenhol. 2016. Path segmentation for beginners: an overview of current methods for detecting changes in animal movement patterns. Movement Ecology, 4: 21. https://doi.org/10.1186/s40462-016-0086-5
Fisher, J. T., L. Wilkinson. 2005. The response of mammals to forest fire and timber harvest in the North America boreal forest. Mammal Review, 35: 51–81. https://doi.org/10.1111/j.1365-2907.2005.00053.x
Forchhammer, M. C., T. H. Clutton-Brock, J. Lindstrom, S. D. Albon. 2001. Climate and population density induce long-term cohort variation in a northern ungulate. Journal of Animal Ecology, 70: 721–729. https://doi.org/10.1046/j.0021-8790.2001.00532.x
Franco, A. M. A., J. K. Hill, C. Kitschke, Y. C. Collingham, D. B. Roy, [et al.]. 2006. Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Global Change Biology, 12: 1545–1553. https://doi.org/10.1111/j.1365-2486.2006.01180.x
Galatowitsch, S., L. Frelich, L. Phillips-Mao. 2009. Regional climate change adaptation strategies for biodiversity conservation in a midcontinental region of North America. Biological Conservation, 142: 2012–2022. https://doi.org/10.1016/j.biocon.2009.03.030
Gardner, J. L., A. Peters, M. R. Kearney, L. Joseph, R. Heinsohn. 2011. Declining body size: a third universal response to warming? Trends in Ecology & Evolution, 26: 285–291. https://doi.org/10.1016/j.tree.2011.03.005
Hampe, A., R. J. Petit. 2005. Conserving biodiversity under climate change: the rear edge matters. Ecology Letters, 8: 461–467. https://doi.org/10.1111/j.1461-0248.2005.00739.x
Hobbs, N. T., D. M. Swift. 1985. Estimates of habitat carrying capacity incorporating explicit nutritional constraints. Journal of Wildlife Management, 49: 814–822. https://doi.org/10.2307/3801716
Latombe, G., D. Fortin, L. Parrott. 2014. Spatio-temporal dynamics in the response of woodland caribou and moose to the passage of grey wolf. Journal of Animal Ecology, 83: 185–198. https://doi.org/10.1111/1365-2656.12108
Lavrovsky, V. V. 1990. Feeding of the wolf and its importance in the territory of the Oksky reserve. In: Multiyear dynamics of natural objects of the Oksky reserve. Main Directorate of Hunting under the Council of Ministers of the RSFSR. Moscow, 53–109. [In Russian]
Lonsinger, R. C., E. M. Gese, L. P. Waits. 2015. Evaluating the reliability of field identification and morphometric classifications for carnivore scats confirmed with genetic analysis. Wildlife Society Bulletin, 39: 593–602. https://doi.org/10.1002/wsb.549
McCann, N. P., R. A. Moen, T. R. Harris. 2013. Warm-season heat stress in moose Alces alces. Canadian Journal of Zoology, 91: 893–898. https://doi.org/10.1139/cjz-2013-0175
McCann, N. P., R. A. Moen, S. K. Windels, T. R. Harris. 2016. Identifying thermal refugia for a cold-adapted mammal facing climate change. Wildlife Biology, 22: 228–237. https://doi.org/10.2981/wlb.00216
Milligan, H. R., J. Koricheva. 2013. Effects of tree species richness and composition on moose winter browsing damage and foraging selectivity: An experimental study. Journal of Animal Ecology, 82: 739–748. https://doi.org/10.1111/1365-2656.12049
Morales, J. M., P. R. Moorcroft, J. Matthiopoulos, J. L. Frair, J. G. Kie, R. A. Powell, et al. 2010. Building the bridge between animal movement and population dynamics. Philos Transact Royal Society B, 365 (1550): 2289–2301. https://doi.org/10.1098/rstb.2010.0082
Mumma, M. A., M. Gillingham, S. Marshall, C. Proctor, A. Bevington, M. Scheideman. 2021. Regional moose (Alces alces) responses to forestry cutblocks are driven by landscape-scale patterns of vegetation composition and regrowth. Forest Ecology and Management, 481: 118763. https://doi.org/10.1016/j.foreco.2020.118763
Niedziałkowska, М., K. J. Hundertmark, B. Jędrzejewska, V. E. Sidorovich, [et al.]. 2016. The contemporary genetic pattern of European moose is shaped by postglacial recolonization, bottlenecks, and the geographical barrier of the Baltic Sea. Biological Journal of the Linnean Society, 117 (4): 879–894. https://doi.org/10.1111/bij.12713
Peterson, S., D. Kramer, J. Hurst, J. Frair. 2020. Browse selection by moose in the Adirondack Park, New York. Alces, 56: 107–126.
Pörtner, H. 2001. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften, 88: 137–146. https://doi.org/10.1007/s001140100216
Pörtner, H. 2002. Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comparative Biochemistry and Physiology Part A, 132: 739–761. https://doi.org/10.1016/S1095-6433(02)00045-4
Post, E., R. O. Peterson, N. C. Stenseth, B. E. McLaren. 1999. Ecosystem consequences of wolf behavioural response to climate. Nature, 401: 905–907. https://doi.org/10.1038/44814
Putman, R. J. 1984. Facts from faces. Mammal Review, 14: 79–97. https://doi.org/10.18500/1816-9775-2016-16-4-439-444
Pylypko, E. N. 2016. Analysis of trophic activity of mammalian phytophages in different biogeocenoses. Proceedings of the Saratov University. Series Chemistry, Biology, Ecology, 16 (4): 441–444. [In Russian] https://doi.org/10.18500/1816-9775-2016-16-4-439-444
Renecker, L. A., R. J. Hudson. 1986. Seasonal energy expenditures and thermoregulatory responses of moose. Canadian Journal of Zoology, 64: 322–327. https://doi.org/10.1139/z86-052
Renecker L. A., C. C. Schwartz. 1998. Food habits and feeding behavior In: Franzmann AW, Schwartz CS, editors. Ecology and Management of the North American Moose. Smithsonian Institution Press, Washington (DC), 403–440.
Ripple, W. J., G. Chapron, J. V. López-Bao, S. M. Durant, D. V. Macdonald, [et al.]. 2016. Saving the World's Terrestrial Megafauna. Bioscience, 66 (10): 807–812. https://doi.org/10.1093/biosci/biw092
Ruprecht J. S., K. R. Hersey, K. Hafen, K. L. Monteith, N. J. DeCesare, [et al.]. 2016. Reproduction in moose at their southern range limit. Journal of Mammalogy, 97: 1355–1365. https://doi.org/10.1093/jmammal/gyw099
Sahaidak, A., M. Samchuk. 2006. Influence of pyrogenic succession on the hunting fauna of the Mizhrichynskyi RLP marshes. In: Zagorodniuk, I. (ed.). Fauna in the Anthropogenic Environment. Luhansk, 206–209. (Series: Proceedings of the Theriological School; Vol. 8). [In Ukrainian]
Schrempp, T. V., J. Rachlow, R. Johnson, L. Shipley, R. Long, [et al.]. 2019. Linking forest management to moose population trends: The role of the nutritional landscape. PLoS ONE, 14: e0219128. https://doi.org/10.1371/journal.pone.0219128
Schwab, F. E., M. D. Pitt. 1991. Moose selection of canopy cover types related to operative temperature, forage, and snow depth. Canadian Journal of Zoology, 69: 3071–3077. https://doi.org/10.1139/z91-431
Smagol, V. M., G. Gavrys, O. O. Salgansky Jr. 2012. Distribution and abundance of elk, Alces alces (Mammalia, Artiodactyla) in Ukraine at the beginning of the XXI century. Vestnik zoologii, 46 (2): 161–166. [In Ukrainian]
Smirnov, K. A. 2007. The experience of estimating forage reserves of forest ungulates using the relationship between shoot diameter and shoot weight. Zhoologicheskii zhurnal, 86 (7): 883–890. [In Russian]
Smirnov, K. A., K. O. Larionov. 2012. Methods for estimating the stock of wood and vegetative fodder of forest ungulates. Lesovedenie, 4: 56–60. [In Russian]
Spitcer, R., M. Churski, J. P. C. Cromsigt. 2019. Doubting dung: eDNA reveals high rates of misidentification in diverse European ungulate communities. European Journal of Wildlife research, 65: 28. https://doi.org/10/1007/s10344-019-1264-8
Street, G. M., J. Fieberg, A.R. Rodgers, M. Carstensen, R. Moen, et al. 2016. Habitat functional response mitigates reduced foraging opportunity: implications for animal fitness and space use. Landscape Ecology, 31: 1939–1953. https://doi.org/10.1007/s10980-016-0372-z
Street, G. M., A. R. Rodgers, J. M. Fryxell. 2015. Mid-day temperature variation influences seasonal habitat selection by moose. Journal of Wildlife Management, 79: 505–512. https://doi.org/10.1002/jwmg.859
Tewksbury, J. J., J. G. T. Anderson, J. D. Bakker, T. J. Billo, P. W. Dunwiddie, [et al.]. 2014. Natural hystory’s place in science and society. Bioscience, 64: 300–310. https://doi.org/10.1093/biosci/biu032
Volokh, A. M. 2008. Dynamics of elk (Alces alces) range in Ukraine. Vestnik okhotovedeniya, 5 (1): 17–27. [In Russian]
Volokh A. M. 2009. History istory and status of population dynamics of moose in the steppe zone of Ukraine. Alces (A Journal Devoted to the Biology and Management of Moose), 45: 5–12.
Weiskopf, S. R., O. E. Ledee, L. M. Thompson. 2019. Climate change effects on deer and moose in the Midwest. Wildlife, 4: 769–781. https://doi.org/10.1002/jwmg.21649
Zhyla, S. 2006. Wolf, wild ungulates and cattle in the north of Zhytomyr region: selective predation. In: Zagorodniuk, I. (ed.). Fauna in the Anthropogenic Environment. Luhansk, 160–164. (Series: Proceedings of the Theriological School; Issue 8). [In Ukrainian]
Zhyla, S. M. 2009. The wolf and the elk. In: Zhyla, S.M. Wolf (Canis lupus L., 1758) in Polissia Nature Reserve and its vicinity: monitoring, spatial structure, ecology, management. Selezivka, 117–128. [In Ukrainian]


 


to main page of journal >>>

created: 30.06.2023
updated: 02.07.2023

Locations of visitors to this page