general info about Theriologia Ukrainica

Theriologia Ukrainica

ISSN 2616-7379 (print) • ISSN 2617-1120 (online)

2023 • Vol. 26 • Contents of volume >>>


download pdfLazariev, D., Z. Barkaszi. 2023. Craniological analysis of the muskrat (Ondatra zibethicus) from different river basins of Ukraine. Theriologia Ukrainica, 26: 71–86. [In English, with Ukrainian summary]


 

title

Craniological analysis of the muskrat (Ondatra zibethicus) from different river basins of Ukraine

author(s)

Denys Lazariev (orcid: 0000-0002-8663-747X), Zoltán Barkaszi (orcid: 0000-0003-3155-6362)

affiliation

I. I. Schmalhausen Institute of Zoology, NAS of Ukraine (Kyiv, Ukraine);
National Museum of Natural History, NAS of Ukraine (Kyiv, Ukraine)

bibliography

Theriologia Ukrainica. 2023. Vol. 26: 71–86.

DOI

http://doi.org/10.53452/TU2608

   

language

English, with Ukrainian summary, titles of tables, captures to figs

abstract

The paper presents the results of a comprehensive craniological analysis of muskrats (Ondatra zibethicus Linnaeus, 1766) from five river basins of Ukraine: Dnipro (Lower Dnipro, Kherson Oblast), Snihurivka (irrigation canal, Mykolaiv Oblast), Danube (Lower Danube, Odesa Oblast), Dnister (Middle Dnister, Lviv and Ternopil oblasts), and Donets (Siversky Donets, Luhansk and Kharkiv oblasts). In total, 72 skulls were analysed using methods of traditional and geometric morphometrics. The craniometrical analysis included 14 measurements that describe general dimensions of the skull and its elements, whereas shape analysis was carried out separately for the dorsal and ventral surfaces of the skull and the buccal surface of the left mandible. The study revealed that muskrats from the Donets basin have the smallest skulls, whereas the other four samples greatly overlap. According to the results of multivariate analyses (PCA, CVA), the length and height of the mandible contribute the most into the differentiation of the samples. Geometric morphometrics showed that the most important distinguishing features include the shape of the nasal and parietal bones on the dorsal side, and of structures mainly related to the diastema and proximal part of the hard palatine on the ventral side. The most significant differences between the five samples, however, depend on the shape and relative orientation of the elements of the ascending ramus of the jaw—the coronoid, condylar, and angular processes, as well as the shape of bights between them and of the adjacent curvatures on the dorsal and ventral sides of the ascending ramus. The revealed features allow suggesting that the main contributing factors into the variation of geographically distinct populations include diet and feeding adaptations on the one hand, and possible spatial relationships and origin on the other. The Ukrainian sample also notably differs from muskrats from geographically distant regions by the mean values of several craniometrical characters, also indicating that animals in areas of secondary introduction have smaller cranial dimensions.

keywords

muskrat, craniological analysis, geometric morphometrics, introduction, river basins of Ukraine

   

references

Anderson, M. J. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26: 32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
Cardini, A., S. Elton, K. Kovarovic, [et al.]. 2021. On the misidentification of species: sampling error in primates and other mammals using geometric morphometrics in more than 4000 individuals. Evolutionary Biology, 48: 190–220. https://doi.org/10.1007/s11692-021-09531-3
Сerevitinov, B. F. 1970. Regulation of geographical variability of the body size of game animals. VIII International Congress of Game Biologists, Helsinki, 22–27.
Cox, P. G., J. Kirkham, A. Herre. 2013. Masticatory biomechanics of the Laotian rock rat, Laonastes aenigmamus, and the function of the zygomaticomandibularis muscle. PeerJ, 1: 1–16. https://doi.org/10.7717/peerj.160
Chueva, A. V., D. B. Gelashvili, V. N. Yakimov, A. A. Bragazin, A. V. Muchanov. 2020. Comprehensive craniological analysis of geographically remote muskrat populations (Ondatra zibethicus Linnaeus, 1766). Principy èkologii, No 1 (35): 121‒135. [In Russian] http://doi.org/10.15393/j1.art.2020.9342
Estafiyeva, A. A. (ed.). 1994. Mammals: Insectivores, Bats, Leporids and Rodents). Nauka, Saint Petersburg, 1–166. (Series: Fauna of Northeastern Russia. Vol. 2). [In Russian]
Ge, D., L. Yao, L. Xia, Z. Zhang, Q. Yang. 2015. Geometric morphometric analysis of skull morphology reveals loss of phylogenetic signal at the generic level in extant lagomorphs (Mammalia: Lagomorpha). Contributions to Zoology, 84 (4): 267–284. https://doi.org/10.1163/18759866-08404001
Gould, H. N., F. B. Кreeger. 1948. The skull of the Louisiana muskrat (Ondatra zibethica rivalicia Bangs): in the skull in advanced age. Journal of Mammalogy, 29: 140–147. https://doi.org/10.2307/1375240
Hammer, Ø., D. A. T. Harper, P. D. Ryan. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4 (1): a04.
Kolosov, A. M., N. P. Lavrov. 1968. Enrichment of the Сommercial fauna of the USSR. Publishing ‘Forest industry’. Moskva, 1–256. [In Russian]
Klingenberg, C. P., G. S. McIntyre. 1998. Geometric morphometrics of developmental instability: Analyzing patterns of fluctuating asymmetry with procrustes methods. Evolution, 52 (5): 1363–1375. https://doi.org/10.2307/2411306
Klingenberg, C. P. 2011. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11: 353–357. https://doi.org/10.1111/j.1755-0998.2010.02924.x
Lalis, A., A. Evin, C. Denys. 2009. Morphological identification of sibling species: the case of West African Mastomys (Rodentia: Muridae) in sympatry. Comptes Rendus. Biologies, 332: 480–488. https://doi.org/10.1016/j.crvi.2008.11.004
Latimer, H. B., R. B. Riley. 1934. Measurements of the skull and of some of the long bones of the muskrat (Ondatra zibethicus cinnamominus). Journal of Morphology, 56: 203–212. https://doi.org/10.1002/jmor.1050560110
Lavrov, N. P. 1957. Acclimatization of Muskrat in the USSR. Centrosoyuz, Moskva, 1–531. [In Russian]
Lazariev, D. 2023. Alien mammal species in floodplain habitats of the Siversky Donets basin (Ukraine). Theriologia Ukrainica, 25: 15–33. http://doi.org/10.53452/TU2504
Maga, A. M., N. Navarro, M. L. Cunningham, T. C. Cox. 2015. Quantitative trait loci affecting the 3D skull shape and size in mouse and prioritization of candidate genes in-silico. Frontiers in Physiology(92): 1–13. https://doi.org/10.3389/fphys.2015.00092
Otgonbaatar, M., S. Shar. 2019. Craniometric characteristics of the introduced muskrats (Ondatra zibethicus Linnaeus, 1766) in Khar-Us Lake National Park, Western Mongolia. Mongolian Journal of Biological Sciences17 (1): 57–64. http://dx.doi.org/10.22353/mjbs.2019.17.07
Pankakoski, E., K. Nurmi. 1986. Skull morphology of Finnish muskrats: geographic variation, age difference sexual dimorphism. Annales Zoologici Fennici, 23: 1–32.
Panov, G. M. 2002. Dynamics of ranges and of abundances of semi-water fur-bearing mammals in Ukraine during second of the 20th century. Bulletin of Lviv University. Biological series, 30: 119–132. [In Ukrainian] https://u.to/sjpKIA
Panteleyev, P. A., A. N. Terekhina, A. A. Varshavsky. 1990. Ecogeographic Variability of Rodents. Nauka, Moskva, 1–1374. [In Russian]
Pavlov, M. P. 1973. Acclimatisation of Hunting and Fishing Animals and Birds in the USSR. Kirov, Volgo-Vyatsk Book Publishing House, 1–535. [In Russian]
Prūsaitė, J., R. Mažeikytė, D. Pauža, N. Paužienė, R. Baleišis, et al. 1988. Lithuania Fauna: Mammals (Lietuvosfauna: Žinduoliai). Mokslas, Vilnius, 1–295. [In Lithuanian]
Quintela, F. M., R. Fornel, T. R. O. Freitas. 2016. Geographic variation in skull shape of the water rat Scapteromys tumidus (Cricetidae, Sigmodontinae): isolation-by-distance plus environmental and geographic barrier effects? Anais da Academia Brasileira de Ciê88 (1): 451–466. https://doi.org/10.1590/0001-3765201620140631
Ruprecht, A. I., 1974. Craniometric variations in Central European populations of Ondatra zibethica (Linnaeus, 1766). Acta Theriologica19: 463–507. https://doi.org/10.4098/AT.arch.74-38
Skyriene, G., A. Paulauskas. 2014. The muskrat skull variation of morphometric parameters to comparing primary and secondary introducents. Balkan Journal of Wildlife Research, (1): 34–39. https://doi.org/10.15679/bjwr.v1i1.12
Sokolov, V. E., N. P. Lavrov. 1993. Muskrat: Morphology, Systematics and Ecology. Nauka, Moskva, 1–543. [In Russian]
Volokh, A. M. 2014. Hunting animals of the Steppe Ukraine. Book 1. FLP Grin D. S., Kherson, 1–412. [In Russian]
Zagorodniuk, I. 2012. Study of osteological samples of mammals: key craniometric characters. Proceedings of the Theriological School11: 16–32. [In Ukrainian] https://doi.org/10.15407/ptt2012.11.016


 


to main page of journal >>>

created: 31.12.2023
updated: 29.03.2024

Locations of visitors to this page