references |
Abdel, Z., B. Abdeliyev, D. Yessimseit, [et al.]. 2023. Natural foci of plague in Kazakhstan in the space-time continuum. Comparative Immunology, Microbiology and Infectious Diseases, 100: 102025. https://doi.org/10.1016/j.cimid.2023.102025
Aikimbayev, A. M., B. B. Atshabar, S. A. Aubakirov, [et al.]. 2006. Epidemiologic Potential of Natural Plague Foci in Kazakhstan. Almaty, 1–153. [Russian]
Allouche, O., A. Tsoar, R. Kadmon. 2006. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). The Journal of Applied Ecology, 43: 6, 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x
Anselin, L., X. Li, J. Koschinsky. 2022. GeoDa: from the desktop to an ecosystem for exploring spatial data. Geographical Analysis, 54: 439–466. https://doi.org/10.1111/gean.12311
Atshabar, B. B., L. A. Burdelov, U. A. Izbanova, [et al.]. 2015. Passport of regions of Kazakhstan on especially dangerous infections. Quarantine and zoonotic infections in Kazakhstan,1.31: 5–177. [Russian]
Baselga, A., J. Lobo, J.-C. Svenning, [et al.]. 2012. Global patterns in the shape of species geographic ranges reveal range determinants. Journal of Biogeography, 39: 760–771. https://doi.org/10.1111/j.1365-2699.2011.02612.x
Baskerville, G. L. P. Emin. 1969. Rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology, 50: 514–521. https://doi.org/10.2307/1933912
Bharti, D. K., G. D. Edgecombe, K. P. Karanth, [et al.]. 2021. Spatial patterns of phylogenetic diversity and endemism in the Western Ghats, India: A case study using ancient predatory arthropods. Ecology & Evolution, 11 (23): 16499–16513. https://doi.org/10.1002/ece3.8119
Boutin, S., J. E. Lane. 2014. Climate change and mammals: evolutionary versus plastic responses. Evolutionary Applications, 7: 29-41. https://doi.org/10.1111/eva.12121
Boyce, M. S., P. R. Vernier, S. E. Nielsen, [et al.]. 2002. Evaluating resource selection functions. Ecological Modelling, 157 (2–3): 281–300. https://doi.org/10.1016/S0304-3800(02)00200-4
Bozinovic, F., D. Naya. 2015. Linking physiology, climate, and species distributional ranges. Integrative Organismal Biology, 277–290. https://doi.org/10.1002/9781118398814.ch17
Brown, J. H., O. J. Reichman, D. Davidson. 1979. Granivory in desert ecosystems. Annual Review of Ecology, Evolution, and Systematics, 10: 201–227. https://doi.org/10.1146/ANNUREV.ES.10.110179.001221
Buebos-Esteve, D. E., N. H. A. Dagamac. 2025. Evaluating model-agnostic post-hoc methods in explainable artificial intelligence: augmenting species distribution models. Biologia futura, 76 (4): 585–595. https://doi.org/10.1007/s42977-025-00288-w
Conrad, O., B. Bechtel, M. Bock, [et al.]. 2015. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development, 8: 1991–2007. https://doi.org/10.5194/gmdd-8-2271-2015
Craney, T. A., J. G. Surles. 2002. Model-dependent variance Inflation factor cutoff values. Quality Engineering, 14 (3): 391–403. https://doi.org/10.1081/QEN-120001878
Dale, V. H., S. C. Beyeler. 2001. Challenges in the development and use of ecological indicators. Ecological Indicators, 1: 3-10. https://doi.org/10.1016/S1470-160X(01)00003-6
De Marco, P. Júnior, C. C. Nóbrega. 2018. Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation. PLoS ONE,13 (9): e0202403. https://doi.org/10.1371/journal.pone.0202403
Elith, J., J.R. Leathwick. 2009. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40: 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159
Ernest, S. M., J. H. Brown, R. R. Parmenter. 2000. Rodents, plants, and precipitation: spatial and temporal dynamics of consumers and resources. Oikos, 88 (3): 470–482. https://doi.org/10.1034/J.1600-0706.2000.880302.X
Farooq, Z., J. Rocklöv, J. Wallin, [et al.]. 2022. Artificial intelligence to predict West Nile virus outbreaks with eco-climatic drivers. The Lancet Regional Health — Europe, 17: e100370. https://doi.org/10.1016/j.lanepe.2022.100370
Fielding, A. H., J. F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models.Environmental Conservation, 24: 38–49. https://doi.org/10.1017/S0376892997000088
Hammer, Ø., D. A. T. Harper, P. D. Ryan. 2001. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4 (1): art. 4 (1–9). http://palaeo-electronica.org/2001_1/past/issue1_01.htm
Hatfield, J. L., J. H. Prueger. 2015. Temperature extremes: effect on plant growth and development. Weather and Climate Extremes, 10: 4–10. https://doi.org/10.1016/j.wace.2015.08.001
Hirzel, A. H., G. Le Lay, V. Helfer, [et al.]. 2006. Evaluating the ability of habitat suitability models to predict species presences. Ecological Modelling, 199 (2): 142–152. https://doi.org/10.1016/j.ecolmodel.2006.05.017
Houlahan, J., S. McKinney, T. Anderson, [et al.]. 2016. The priority of prediction in ecological understanding. Oikos, 126 (1): 1–7. 10.1111/oik.03726.
Hutchinson, G. E. 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22: 415–427. https://doi.org/10.1101/SQB.1957.022.01.039
Jánossy, D., E. Schmidt. 1970. Die Nahrung des Uhus (Bubo bubo). Regionale und erdzeitliche Änderungen. Bonner zoologische Beiträge, 21: 25–31. https://www.zobodat.at/pdf/Bonner-Zoologische-Beitraege_25_0123-0147.pdf
Kalabukhov, N. I. 1960. Ecology of Rodents and Natural Focality of Plague. In: Natural Focality and Epidemiology of Particularly Dangerous Infectious Diseases. Saratov, 85–95. [Russian]
Kindlmann, P., S. Tsiftsis, L. Buchbauerová, [et al.]. 2025. How will environmental conditions affect species distribution and survival in the coming decades—A Review. Diversity, 17: 11, 793. https://doi.org/10.3390/d17110793
Koshkin, A.V., L.Y. Nekrasova, V. M. Dubyanskiy. 2007. The great jerboa (Allactaga major Kerr, 1792) in the desert foci of plague in Kazakhstan]. In: Problems of Particularly Dangerous Infections (Saratov), 93: 44–47. [Russian]
Kosminsky, R. B., V. F. Marinin. 1975. Features of the natural plague focus in the North-West Priazov region]. In: Questions of the Natural Focality of Diseases (Saratov), 7: 182–189. [Russian]
Kucheruk, V. V. 1965. Rodents as inhabitants of open landscapes of the USSR and Their Epidemiological Significance. In: Fauna and Ecology of Rodents (Moscow), 9: 5–88. [Russian]
Li, Q., R. Hou, X. Zhang, [et al.]. 2025. Integrating explainable machine learning to predict the ecological niche distribution of Cytospora chrysosperma in Xinjiang, China. Forest Ecology and Management, 595: 123031. https://doi.org/10.1016/j.foreco.2025.123031
Lichstein, J. W., T. R. Simons, S. A. Shriner, [et al.]. 2002. Spatial autocorrelation and autoregressive models in ecology. Ecological Monographs, 72: 445–463. https://doi.org/10.2307/3100099
Liu X.-T., Q. Yuan, J. Ni. 2019. Research advances in modelling plant species distribution in China. Chinese Journal of Plant Ecology, 43 (4): 273–283. https://www.plant-ecology.com/EN/Y2019/V43/I4/273
Liu, C., M. White, G. Newell. 2013. Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography, 40 (4): 778–789. https://doi.org/10.1111/jbi.12058
Lobo, J. M. 2007. EDIT Geoplatform. http://edit.csic.es/GISdownloads.html
Lobo, J. M. 2008. More complex distribution models or more representative data? Biodiversity Informatics, 5: 15–19. https://doi.org/10.17161/bi.v5i0.40
Lundberg, S. M., B. Nair, M. S. Vavilala [et al.]. 2018. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nature Biomedical Engineering, 2 (10): 749e760. https://doi.org/10.1038/s41551-018-0304-0
Mallen-Cooper, M., S. Nakagawa, D. J. Eldridge. 2019. Global meta-analysis of soil-disturbing vertebrates reveals strong effects on ecosystem patterns and processes. Global Ecology and Biogeography, 28: 661–679. https://doi.org/10.1111/geb.12877
Naimi, B., N. A. S. Hamm, T. A. Groen, [et al.]. 2014. Where is positional uncertainty a problem for species distribution modelling. Ecography, 37 (2): 191–203. https://doi.org/10.1111/j.1600-0587.2013.00205.x
Nedyalkov, N., A. Levin, A. Dixon, [et al.]. 2014. Diet of saker falcon (Falco cherrug) and Eastern imperial eagle (Aquila heliaca) from Central Kazakhstan. Ecologia Balkanica, 6 (1): 25–30.
Nikraftar, Z., E. Parizi, M. Saber, [et al.]. 2025. An interpretable machine learning framework for unraveling the dynamics of surface soil moisture drivers. Remote Sensing,17 (14): 2505. https://doi.org/10.3390/rs17142505
Noy-Meir, I. 1973. Desert ecosystems: environment and producers. Annual Review of Ecology and Systematics, 4: 25–51. https://doi.org/10.1146/annurev.es.04.110173.000325
Nuñez, M.A., K.A. Medley. 2011. Pine invasions: climate predicts invasion success; something else predicts failure. Diversity and Distributions, 17: 703–713. https://doi.org/10.1111/j.1472-4642.2011.00772.x
Peterson, A. T., J. Soberón, R. G. Pearson, [et al.]. 2011. Ecological Niches and Geographic Distributions. Princeton University Press, 1–328. https://doi.org/10.1515/9781400840670
Pettorelli, N, S. Ryan, T. Mueller, [et al.]. 2011. The Normalized Difference Vegetation Index (NDVI): unforeseen successes in animal ecology. Climate Research, 46: 15-27. https://doi.org/10.3354/cr00936
Phillips, S. J., R. P. Anderson, R. E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological modelling, 190 (3–4) : 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
Poggio, L., L. M. de Sousa, N. H. Batjes [et al.]. 2021. SoilGrids 2.0: Producing Soil Information for the Globe with Quantified Spatial Uncertainty. The Soil, 7: 217–240. https://doi.org/10.5194/soil-7-217-2021
Rametov, N. M., M. Steiner, N. A. Bizhanova, [et al.]. 2023. Mapping plague risk using Super Species Distribution Models and forecasts for rodents in the Zhambyl region, Kazakhstan. GeoHealth, 7: e2023GH000853. https://doi.org/10.1029/2023GH000853
Rathore, M.K., L.K. Sharma. 2023. Efficacy of species distribution models (SDMs) for ecological realms to ascertain biological conservation and practices. Biodiversity and Conservation, 32: 5393053–3087. https://doi.org/10.1007/s10531-023-02648-1
Rodal, M., S. Luyssaert, M. Balzarolo [et al.]. 2025. A global database of net primary production of terrestrial ecosystems. Scientific Data, 12: 1534. https://doi.org/10.1038/s41597-025-05773-4
Scavuzzo, C. M., J. M. Scavuzzo, M. N. Campero, [et al.]. 2022. Feature importance: Opening a soil-transmitted helminth machine learning model via SHAP. Infectious Disease Modelling, 7 (1): 262–276. https://doi.org/10.1016/j.idm.2022.01.004
Shabani, F., M. Ahmadi, N. Lorestani, [et al.]. 2025. Pedology and plant provenance can improve species distribution predictions of Australian native flora: A calibrated and validated modeling exercise on 5033 species. Ecology and Evolution, 24 (15, 6): e71430. https://doi.org/10.1002/ece3.71430
Soberón, J, M. Nakamura. 2009. Niches and distributional areas: concepts, methods, and assumptions. Proceedings of the National Academy of Sciences of the United States of America, 17 (106, Suppl. 2): 19644–50. https://doi.org/10.1073/pnas.0901637106
Soberón, J., B. Arroyo-Peña. 2017. Are fundamental niches larger than the realized? Testing a 50-year-old prediction by Hutchinson. PLOS ONE, 12: https://doi.org/10.1371/journal.pone.0175138
Song, L., L. Estes. 2023. itsdm: Isolation forest-based presence-only species distribution modelling and explanation in r. Methods in Ecology and Evolution, 14: 831–840. https://doi.org/10.1111/2041-210X.14067
Tsytsulina, K., N. Formozov, I. Zagorodnyuk [et al.]. 2016. Allactaga major (errata version published in 2017). The IUCN Red List of Threatened Species 2016: e.T857A115052919. https://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T857A22202445.en
Twigg, G. I. 1978. The role of rodents in plague dissemination: a worldwide review. Mammal Review, 8: 77–110. https://doi.org/10.1111/j.1365-2907.1978.tb00220.x
Velazco, S. J. E., M. B. Rose, A. F. A. Andrade, [et al.]. 2022. flexsdm: An R package for supporting a comprehensive and flexible species distribution modelling workflow. Methods in Ecology and Evolution, 13 (8): 1661–1669. https://doi.org/10.1111/2041-210X.13874
Zhang, L., S. Liu, P. Sun, [et al.]. 2015. Consensus forecasting of species distributions: The effects of niche model performance and niche properties. PLoS One, 10 (3): e0120056. https://doi.org/10.1371/journal.pone.0120056
Zhao, Z., N. Xiao, M. Shen, [et al.]. 2022. Comparison between optimized MaxEnt and random forest modeling in predicting potential distribution: A case study with Quasipaa boulengeri in China. Science of the Total Environment, 842: 156867. https://doi.org/10.1016/j.scitotenv.2022.156867 |