general info about Theriologia Ukrainica

Theriologia Ukrainica

ISSN 2616-7379 (print) • ISSN 2617-1120 (online)

2025 • Vol. 30 • Contents of volume >>>


download pdfMezhzherin, S., V. Tytar, H. Rashevska, A. Potopa. 2025. Unveiling the ecological drivers of the great jerboa’s range: a species distribution model with implications for plague risk. Theriologia Ukrainica, 30: 55–66. [In English, with Ukrainian summary]


 

title

Unveiling the ecological drivers of the great jerboa’s range: a species distribution model with implications for plague risk

author(s)

Sergiy Mezhzherin (orcid: 0000-0003-2905-5235) (1)
Volodymyr Tytar (orcid: 0000-0002-0864-2548) (1)
Hanna Rashevska (orcid: 0000-0002-0523-133X) (2)
Alina Potopa (orcid: 0000-0002-0523-133X) (2)

affiliation

(1) I. I. Schmalhausen Institute of Zoology, NAS of Ukraine (Kyiv, Ukraine)
(2) Kryvyi Rih State Pedagogical University (Kryvyi Rih, Ukraine)

bibliography

Theriologia Ukrainica. 2025. Vol. 30: 55–66.

DOI

http://doi.org/10.53452/TU3007

   

language

English, with Ukrainian summary, titles of tables, captures to figs

abstract

The great jerboa (Allactaga major), a keystone rodent of Eurasian deserts and steppes, is of dual conservation and epidemiological concern, being Near Threatened and a natural reservoir of plague. To understand the fundamental drivers of its distribution and identify potential plague reservoir zones, we developed a robust Species Distribution Model (SDM) using a comprehensive set of climatic, soil, and vegetation variables across its Eurasian range. Occurrence data were refined and modelled using the Maxent algorithm within the ‘flexsdm’ framework, with model interpretation advanced via SHAP (SHapley Additive exPlanations) values. Our model accurately predicted the species’ known range from Eastern Europe to Central Asia. SHAP analysis revealed that climate, rather than soil or vegetation biomass, acts as the primary, range-defining filter. The three most influential predictors were Precipitation of the Driest Week (Bio14), Temperature Annual Range (Bio07), and Minimum Temperature of the Coldest Week (Bio06), defining thresholds for aridity tolerance, continentality, and hibernation survival, respectively. Notably, the highest-ranked variable, Bio14, which coincides with the late-winter (February–March) period preceding hibernation emergence, revealed a finely tuned ecological mechanism. The SHAP dependence plot showed a distinct non-linear optimum, where suitability peaks at approximately 6 mm of precipitation. This window likely represents the essential cue for germinating the annual ephemerals that form the critical post-hibernation food pulse, a link supported by a strong correlation (r = 0.68) between this precipitation and April vegetation greenness (NDVI). This shifts the understanding of the species’ distribution from one of simple physiological tolerance to obligate ecological synchrony. Consequently, areas of high predicted suitability, particularly in southern and eastern Kazakhstan (e.g. Zhambyl, Turkistan, and Almaty oblasts), delineate a continuous ecological corridor representing potential enzootic plague reservoir zones. Our SDM thus transcends a predictive map to diagnose the core abiotic constraints and a key trophic bottleneck defining the species’ niche, providing a vital evidence base for both targeted conservation strategies and proactive, risk-based public health surveillance in endemic plague regions.

keywords

Allactaga major, species distribution modelling (SDM), ecological niche, phenological synchrony, zoonotic risk

   

references

Abdel, Z., B. Abdeliyev, D. Yessimseit, [et al.]. 2023. Natural foci of plague in Kazakhstan in the space-time continuum. Comparative Immunology, Microbiology and Infectious Diseases, 100: 102025. https://doi.org/10.1016/j.cimid.2023.102025
Aikimbayev, A. M., B. B. Atshabar, S. A. Aubakirov, [et al.]. 2006. Epidemiologic Potential of Natural Plague Foci in Kazakhstan. Almaty, 1–153. [Russian]
Allouche, O., A. Tsoar, R. Kadmon. 2006. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). The Journal of Applied Ecology, 43: 6, 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x
Anselin, L., X. Li, J. Koschinsky. 2022. GeoDa: from the desktop to an ecosystem for exploring spatial data. Geographical Analysis, 54: 439–466. https://doi.org/10.1111/gean.12311
Atshabar, B. B., L. A. Burdelov, U. A. Izbanova, [et al.]. 2015. Passport of regions of Kazakhstan on especially dangerous infections. Quarantine and zoonotic infections in Kazakhstan,1.31: 5–177. [Russian]
Baselga, A., J. Lobo, J.-C. Svenning, [et al.]. 2012. Global patterns in the shape of species geographic ranges reveal range determinants. Journal of Biogeography, 39: 760–771. https://doi.org/10.1111/j.1365-2699.2011.02612.x
Baskerville, G. L. P. Emin. 1969. Rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology, 50: 514–521. https://doi.org/10.2307/1933912
Bharti, D. K., G. D. Edgecombe, K. P. Karanth, [et al.]. 2021. Spatial patterns of phylogenetic diversity and endemism in the Western Ghats, India: A case study using ancient predatory arthropods. Ecology & Evolution, 11 (23): 16499–16513. https://doi.org/10.1002/ece3.8119
Boutin, S., J. E. Lane. 2014. Climate change and mammals: evolutionary versus plastic responses. Evolutionary Applications, 7: 29-41. https://doi.org/10.1111/eva.12121
Boyce, M. S., P. R. Vernier, S. E. Nielsen, [et al.]. 2002. Evaluating resource selection functions. Ecological Modelling, 157 (2–3): 281–300. https://doi.org/10.1016/S0304-3800(02)00200-4
Bozinovic, F., D. Naya. 2015. Linking physiology, climate, and species distributional ranges. Integrative Organismal Biology, 277–290. https://doi.org/10.1002/9781118398814.ch17
Brown, J. H., O. J. Reichman, D. Davidson. 1979. Granivory in desert ecosystems. Annual Review of Ecology, Evolution, and Systematics, 10: 201–227. https://doi.org/10.1146/ANNUREV.ES.10.110179.001221
Buebos-Esteve, D. E., N. H. A. Dagamac. 2025. Evaluating model-agnostic post-hoc methods in explainable artificial intelligence: augmenting species distribution models. Biologia futura, 76 (4): 585–595. https://doi.org/10.1007/s42977-025-00288-w
Conrad, O., B. Bechtel, M. Bock, [et al.]. 2015. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development, 8: 1991–2007. https://doi.org/10.5194/gmdd-8-2271-2015
Craney, T. A., J. G. Surles. 2002. Model-dependent variance Inflation factor cutoff values. Quality Engineering, 14 (3): 391–403. https://doi.org/10.1081/QEN-120001878
Dale, V. H., S. C. Beyeler. 2001. Challenges in the development and use of ecological indicators. Ecological Indicators, 1: 3-10. https://doi.org/10.1016/S1470-160X(01)00003-6
De Marco, P. Júnior, C. C. Nóbrega. 2018. Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation. PLoS ONE,13 (9): e0202403. https://doi.org/10.1371/journal.pone.0202403
Elith, J., J.R. Leathwick. 2009. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40: 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159
Ernest, S. M., J. H. Brown, R. R. Parmenter. 2000. Rodents, plants, and precipitation: spatial and temporal dynamics of consumers and resources. Oikos, 88 (3): 470–482. https://doi.org/10.1034/J.1600-0706.2000.880302.X
Farooq, Z., J. Rocklöv, J. Wallin, [et al.]. 2022. Artificial intelligence to predict West Nile virus outbreaks with eco-climatic drivers. The Lancet Regional Health — Europe, 17: e100370. https://doi.org/10.1016/j.lanepe.2022.100370
Fielding, A. H., J. F. Bell. 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models.Environmental Conservation, 24: 38–49. https://doi.org/10.1017/S0376892997000088
Hammer, Ø., D. A. T. Harper, P. D. Ryan. 2001. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4 (1): art. 4 (1–9). http://palaeo-electronica.org/2001_1/past/issue1_01.htm
Hatfield, J. L., J. H. Prueger. 2015. Temperature extremes: effect on plant growth and development. Weather and Climate Extremes, 10: 4–10. https://doi.org/10.1016/j.wace.2015.08.001
Hirzel, A. H., G. Le Lay, V. Helfer, [et al.]. 2006. Evaluating the ability of habitat suitability models to predict species presences. Ecological Modelling, 199 (2): 142–152. https://doi.org/10.1016/j.ecolmodel.2006.05.017
Houlahan, J., S. McKinney, T. Anderson, [et al.]. 2016. The priority of prediction in ecological understanding. Oikos, 126 (1): 1–7. 10.1111/oik.03726.
Hutchinson, G. E. 1957. Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22: 415–427. https://doi.org/10.1101/SQB.1957.022.01.039
Jánossy, D., E. Schmidt. 1970. Die Nahrung des Uhus (Bubo bubo). Regionale und erdzeitliche Änderungen. Bonner zoologische Beiträge, 21: 25–31. https://www.zobodat.at/pdf/Bonner-Zoologische-Beitraege_25_0123-0147.pdf
Kalabukhov, N. I. 1960. Ecology of Rodents and Natural Focality of Plague. In: Natural Focality and Epidemiology of Particularly Dangerous Infectious Diseases. Saratov, 85–95. [Russian]
Kindlmann, P., S. Tsiftsis, L. Buchbauerová, [et al.]. 2025. How will environmental conditions affect species distribution and survival in the coming decades—A Review. Diversity, 17: 11, 793. https://doi.org/10.3390/d17110793
Koshkin, A.V., L.Y. Nekrasova, V. M. Dubyanskiy. 2007. The great jerboa (Allactaga major Kerr, 1792) in the desert foci of plague in Kazakhstan]. In: Problems of Particularly Dangerous Infections (Saratov), 93: 44–47. [Russian]
Kosminsky, R. B., V. F. Marinin. 1975. Features of the natural plague focus in the North-West Priazov region]. In: Questions of the Natural Focality of Diseases (Saratov), 7: 182–189. [Russian]
Kucheruk, V. V. 1965. Rodents as inhabitants of open landscapes of the USSR and Their Epidemiological Significance. In: Fauna and Ecology of Rodents (Moscow), 9: 5–88. [Russian]
Li, Q., R. Hou, X. Zhang, [et al.]. 2025. Integrating explainable machine learning to predict the ecological niche distribution of Cytospora chrysosperma in Xinjiang, China. Forest Ecology and Management, 595: 123031. https://doi.org/10.1016/j.foreco.2025.123031
Lichstein, J. W., T. R. Simons, S. A. Shriner, [et al.]. 2002. Spatial autocorrelation and autoregressive models in ecology. Ecological Monographs, 72: 445–463. https://doi.org/10.2307/3100099
Liu X.-T., Q. Yuan, J. Ni. 2019. Research advances in modelling plant species distribution in China. Chinese Journal of Plant Ecology, 43 (4): 273–283. https://www.plant-ecology.com/EN/Y2019/V43/I4/273
Liu, C., M. White, G. Newell. 2013. Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography, 40 (4): 778–789. https://doi.org/10.1111/jbi.12058
Lobo, J. M. 2007. EDIT Geoplatform. http://edit.csic.es/GISdownloads.html
Lobo, J. M. 2008. More complex distribution models or more representative data? Biodiversity Informatics, 5: 15–19. https://doi.org/10.17161/bi.v5i0.40
Lundberg, S. M., B. Nair, M. S. Vavilala [et al.]. 2018. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nature Biomedical Engineering, 2 (10): 749e760. https://doi.org/10.1038/s41551-018-0304-0
Mallen-Cooper, M., S. Nakagawa, D. J. Eldridge. 2019. Global meta-analysis of soil-disturbing vertebrates reveals strong effects on ecosystem patterns and processes. Global Ecology and Biogeography, 28: 661–679. https://doi.org/10.1111/geb.12877
Naimi, B., N. A. S. Hamm, T. A. Groen, [et al.]. 2014. Where is positional uncertainty a problem for species distribution modelling. Ecography, 37 (2): 191–203. https://doi.org/10.1111/j.1600-0587.2013.00205.x
Nedyalkov, N., A. Levin, A. Dixon, [et al.]. 2014. Diet of saker falcon (Falco cherrug) and Eastern imperial eagle (Aquila heliaca) from Central Kazakhstan. Ecologia Balkanica, 6 (1): 25–30.
Nikraftar, Z., E. Parizi, M. Saber, [et al.]. 2025. An interpretable machine learning framework for unraveling the dynamics of surface soil moisture drivers. Remote Sensing,17 (14): 2505. https://doi.org/10.3390/rs17142505
Noy-Meir, I. 1973. Desert ecosystems: environment and producers. Annual Review of Ecology and Systematics, 4: 25–51. https://doi.org/10.1146/annurev.es.04.110173.000325
Nuñez, M.A., K.A. Medley. 2011. Pine invasions: climate predicts invasion success; something else predicts failure. Diversity and Distributions, 17: 703–713. https://doi.org/10.1111/j.1472-4642.2011.00772.x
Peterson, A. T., J. Soberón, R. G. Pearson, [et al.]. 2011. Ecological Niches and Geographic Distributions. Princeton University Press, 1–328. https://doi.org/10.1515/9781400840670
Pettorelli, N, S. Ryan, T. Mueller, [et al.]. 2011. The Normalized Difference Vegetation Index (NDVI): unforeseen successes in animal ecology. Climate Research, 46: 15-27. https://doi.org/10.3354/cr00936
Phillips, S. J., R. P. Anderson, R. E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological modelling, 190 (3–4) : 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
Poggio, L., L. M. de Sousa, N. H. Batjes [et al.]. 2021. SoilGrids 2.0: Producing Soil Information for the Globe with Quantified Spatial Uncertainty. The Soil, 7: 217–240. https://doi.org/10.5194/soil-7-217-2021
Rametov, N. M., M. Steiner, N. A. Bizhanova, [et al.]. 2023. Mapping plague risk using Super Species Distribution Models and forecasts for rodents in the Zhambyl region, Kazakhstan. GeoHealth, 7: e2023GH000853. https://doi.org/10.1029/2023GH000853
Rathore, M.K., L.K. Sharma. 2023. Efficacy of species distribution models (SDMs) for ecological realms to ascertain biological conservation and practices. Biodiversity and Conservation, 32: 5393053–3087. https://doi.org/10.1007/s10531-023-02648-1
Rodal, M., S. Luyssaert, M. Balzarolo [et al.]. 2025. A global database of net primary production of terrestrial ecosystems. Scientific Data, 12: 1534. https://doi.org/10.1038/s41597-025-05773-4
Scavuzzo, C. M., J. M. Scavuzzo, M. N. Campero, [et al.]. 2022. Feature importance: Opening a soil-transmitted helminth machine learning model via SHAP. Infectious Disease Modelling, 7 (1): 262–276. https://doi.org/10.1016/j.idm.2022.01.004
Shabani, F., M. Ahmadi, N. Lorestani, [et al.]. 2025. Pedology and plant provenance can improve species distribution predictions of Australian native flora: A calibrated and validated modeling exercise on 5033 species. Ecology and Evolution, 24 (15, 6): e71430. https://doi.org/10.1002/ece3.71430
Soberón, J, M. Nakamura. 2009. Niches and distributional areas: concepts, methods, and assumptions. Proceedings of the National Academy of Sciences of the United States of America, 17 (106, Suppl. 2): 19644–50. https://doi.org/10.1073/pnas.0901637106
Soberón, J., B. Arroyo-Peña. 2017. Are fundamental niches larger than the realized? Testing a 50-year-old prediction by Hutchinson. PLOS ONE, 12: https://doi.org/10.1371/journal.pone.0175138
Song, L., L. Estes. 2023. itsdm: Isolation forest-based presence-only species distribution modelling and explanation in r. Methods in Ecology and Evolution, 14: 831–840. https://doi.org/10.1111/2041-210X.14067
Tsytsulina, K., N. Formozov, I. Zagorodnyuk [et al.]. 2016. Allactaga major (errata version published in 2017). The IUCN Red List of Threatened Species 2016: e.T857A115052919. https://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T857A22202445.en
Twigg, G. I. 1978. The role of rodents in plague dissemination: a worldwide review. Mammal Review, 8: 77–110. https://doi.org/10.1111/j.1365-2907.1978.tb00220.x
Velazco, S. J. E., M. B. Rose, A. F. A. Andrade, [et al.]. 2022. flexsdm: An R package for supporting a comprehensive and flexible species distribution modelling workflow. Methods in Ecology and Evolution, 13 (8): 1661–1669. https://doi.org/10.1111/2041-210X.13874
Zhang, L., S. Liu, P. Sun, [et al.]. 2015. Consensus forecasting of species distributions: The effects of niche model performance and niche properties. PLoS One, 10 (3): e0120056. https://doi.org/10.1371/journal.pone.0120056
Zhao, Z., N. Xiao, M. Shen, [et al.]. 2022. Comparison between optimized MaxEnt and random forest modeling in predicting potential distribution: A case study with Quasipaa boulengeri in China. Science of the Total Environment, 842: 156867. https://doi.org/10.1016/j.scitotenv.2022.156867


 


to main page of journal >>>

created: 25.12.2025
updated: 31.12.2025

Locations of visitors to this page