general info about Theriologia Ukrainica

Theriologia Ukrainica

ISSN 2616-7379 (print) • ISSN 2617-1120 (online)

2024 • Vol. 27 • Contents of volume >>>


download pdf Tytar, V., I. Kozynenko, M. Navakatikyan. 2024. Modelling the distribution of the proboscis monkey (Nasalis larvatus) in Sabah (Borneo) based on remotely sensed high-resolution global cloud dynamics. Theriologia Ukrainica, 27: 103–111. [In English, with Ukrainian summary]


 

title

Modelling the distribution of the proboscis monkey (Nasalis larvatus) in Sabah (Borneo) based on remotely sensed high-resolution global cloud dynamics

author(s)

Volodymyr Tytar (orcid: 0000-0002-0864-2548) [1],
Iryna Kozynenko (orcid: 0009-0003-9437-3309) [1],
Michael Navakatikyan (orcid: 0000-0002-1107-1694) [2]

affiliation

[1] Ivan Schmalhausen Institute of Zoology, NAS of Ukraine (Kyiv, Ukraine)
[2] University of New South Wales (New South Wales,  Australia)

bibliography

Theriologia Ukrainica. 2024. Vol. 27: 103–111 (in press).

DOI

http://doi.org/10.53452/TU2711

   

language

English, with Ukrainian summary, titles of tables, captures to figs

abstract

Proboscis monkeys, Nasalis larvatus (Wurmb, 1787), are indigenous to the island of Borneo and are considered one of its most emblematic species. Today the conservation status of this primate is classified as Endangered on the IUCN Red List and listed under Appendix I of CITES, prohibiting all international commercial trade. In the Malaysian state of Sabah, the species is listed as totally protected and cannot be hunted. Continuing studies suggest that the number of proboscis monkeys has been decreasing in recent years. These studies have identified various factors contributing to this decline and its potential consequences. In order to carry out a thorough assessment of the conservation status of the species it is essential to have a good understanding of the animal’s ecology and habitat requirements and to use research-based approaches. One of such are species distribution models (SDMs), which in recent decades have become widely used tools in ecology by relating species occurrences to environmental data to gain ecological insights. In this work, we specifically evaluated the effect of environmental parameters such as cloud cover to predict the potential distribution of the proboscis monkey in Sabah. Cloud cover, a seemingly simple atmospheric phenomenon, exerts a profound influence on a wide range of ecological biological processes, yet the assessment of its importance has remained remarkably limited. For modelling purposes the ‘flexsdm’ R (v. 3.3.3) modelling package was employed for testing out the Maximum entropy (Maxent) algorithm, one of the most widely used SDM modelling methods. Model evaluation gave satisfactory results and the resulting model found a high level of suitability for proboscis monkeys in nearshore areas. A concerning discovery is that perhaps less than 13% of Sabah’s area is suitable habitat for proboscis monkeys, raising questions about their long-term viability. Cloud cover, particularly average annual cloudiness, is a key environmental factor influencing the distribution of proboscis monkeys in Sabah. The conversion of Borneo’s forests to oil palm plantations can negatively impact cloud properties, potentially threatening the monkeys’ habitat.

keywords

proboscis monkeys, Sabah, species distribution modelling, Maxent, cloud dynamics

   

references

Agoramoorthy, G., M. J. Hsu. 2005. Borneo's proboscis monkey — A study of its diet of mineral and phytochemical concentrations August 2005. Current Science, 89 (3): 454–457.
Allouche, O., A. Tsoar, R. Kadmon. 2006. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol., 43: 1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x
Atmoko, T., Mukhlisi. 2021. The Conservation of Proboscis Monkey in Suwi River, East Kalimantan, Indonesia. BIO Web Conf., 33: 01004. https://doi.org/10.1051/bioconf/20213301004
Barbet-Massin, M., Jiguet, F., Albert, C. H., Thuiller, W. 2012. Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol. Evol., 3: 327–338. https://doi.org/10.1111/j.2041-210X.2011.00172.x
Bennett, E., A. C. Sebastian. 1988. Social organization and ecology of Proboscis Monkey (Nasalis larvatus) in Mixed Coastal Forest in Sarawak. International Journal of Primatology, 9: 233–255. https://doi.org/10.1007/BF02737402
Bennett, E. L., F. Gombek. 1993. Proboscis monkeys of Borneo. Natural History Publications (Borneo). Sdn. Bhd. & Koktas Sabah, Ranau, Sabah, Malaysia, 84–99.
Bernard, H. 1997. A study on the distribution and abundance of proboscis monkey (Nasalis larvatus) in the Klias Peninsula, Sabah, North Borneo. Journal of Wildlife Management & Restoration in Sabah, 1: 1–12.
Boonratana, R. 1993. The ecology and behaviour of the proboscis monkey (Nasalis larvatus) in the Lower Kinabatangan, Sabah. PhD Thesis, Faculty of Graduate Studies, Mahidol University, Thailand, 1–183.
Boonratana, R. 2000. Ranging Behavior of Proboscis Monkeys (Nasalis larvatus) in the Lower Kinabatangan, Northern Borneo. International Journal of Primatology, 21 (3): 497–518. https://doi.org/10.1023/A:1005496004129
Boyce, M. S., P. R. Vernier, S. E. Nielsen, F. K. A. Schmiegelow. 2002. Evaluating resource selection functions. Ecol. Model., 157: 281–300. https://doi.org/10.1016/S0304-3800(02)00200-4
Brun, P., W. Thuiller, Y. Chauvier, L. Pellissier, R. O. Wüest, [et al.]. 2020. Model complexity affects species distribution projections under climate change. Journal of Biogeography, 47 (1): 130–142. https://doi.org/10.1111/jbi.13734
Chapman, A. D. 2005. Principles and Methods of Data Cleaning — Primary Species and Species Occurrence Data, version 1.0. Report for the Global Biodiversity Information Facility, Copenhagen, 1–75.
Chapman, C. A., C. A. Peres. 2001. Primate conservation in the new millennium: The role of scientists. Evol. Anthropol., 10: 16–33. https://doi.org/10.1002/1520-6505(2001)10:1<16::AID-EVAN1010>3.0.CO;2-O
Davies, G., J. Payne. 1982. A faunal survey of Sabah. Report, IUCN/WWF Project No.1692, WWF–Malaysia, Kuala Lumpur.
Dormann, C.F., J. Elith, S. Bacher, C. Buchmann, G. Carl, [et al.]. 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36 (1): 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x
Elith, J., J.R. Leathwick. 2009 Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annual Review of Ecology, Evolution, and Systematics, 40: 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159
Elith, J., S. J. Phillips, T. Hastie, M. Dudík, Y. E. Chee, C. J. Yates. 2011. A statistical explanation of maxent for ecologists. Diversity and Distributions, 17: 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
Fois, M., A. Cuena-Lombraña, G. Fenu, G. Bacchetta. 2018. Using species distribution models at local scale to guide the search of poorly known species: Review, methodological issues and future directions. Ecological Modelling, 385: 124–132. https://doi.org/10.1016/j.ecolmodel.2018.07.018
Fuller, D. O., T. C. Jessup, A. Salim. 2004. Loss of forest cover in Kalimantan, Indonesia, since the 1997–1998 El Niño. Conserv. Biol., 18 (1): 249–254. https://doi.org/10.1111/j.1523-1739.2004.00018.x
GBIF Occurrence. GBIF.org, 28 July 2024. https://doi.org/10.15468/dl.9s3rgb
Gerstner, B. E., M. E. Blair, P. Bills, C. A. Cruz-Rodriguez, P. L. Zarnetske. 2024. The influence of scale-dependent geodiversity on species distribution models in a biodiversity hotspot. Philos Trans A Math Phys Eng Sci., 382 (2269): 20230057. https://doi.org/10.1098/rsta.2023.0057
Guisan, A., W. Thuiller. 2005. Predicting species distribution: Offering more than simple habitat models. Ecology Letters, 8: 993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x
Guisan, A., N. E. Zimmermann. 2000. Predictive Habitat Distribution Models in Ecology. Ecological Modelling, 135: 147–186. http://dx.doi.org/10.1016/S0304-3800(00)00354-9
Hanberry, B. B. 2023. Practical guide for retaining correlated climate variables and unthinned samples in species distribution modeling, using random forests. Ecological Informatics, Available online 2.12.2023, 102406. https://doi.org/10.1016/j.ecoinf.2023.102406
Hanberry, B. B. 2023a. Shifting potential tree species distributions from the Last Glacial Maximum to the Mid-Holocene in North America, with a correlation assessment. J. Quaternary Sci., 38: 829–839. https://doi.org/10.1002/jqs.3526
Hirzel, A. H., G. Le Lay, V. Helfer, C. Randin, A. Guisan. 2006. Evaluating the ability of habitat suitability models to predict species presences. Ecological Modelling, 199: 142–152. https://doi.org/10.1016/j.ecolmodel.2006.05.017
Jenks, G. F., F. C. Caspall. 1971. Error on choroplethic maps: definition, measurement, reduction. Ann. Assoc. Am. Geogr., 61: 217–244. https://doi.org/10.1111/j.1467-8306.1971.tb00779.x
Kawabe, M., T. Mano. 1972. Ecology and behavior of the wild proboscis monkey, Nasalis larvatus (Wurmb), in Sabah, Malaysia. Primates, 13: 213–227. https://doi.org/10.1007/BF01840882
Lin, K., Y. Gao. 2022. Model interpretability of financial fraud detection by group SHAP. Expert Systems with Applications, 210: 118354. https://doi.org/10.1016/j.eswa.2022.118354
Lobo, J. M., A. Jiménez-Valverde, R. Real. 2008. AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17: 145–151. https://doi.org/10.1111/j.1466-8238.2007.00358.x
Lundberg, S. M., S. I. Lee. 2017. A unified approach to interpreting model predictions. In: Proceedings of the 31st International Conference on Machine Learning, 3547–3555.
Lundberg, S. M., B. Nair, M. S. Vavilala, M. Horibe, M. J. Eisses, [et al.]. 2018. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nature biomedical engineering, 2 (10): 749–760. https://doi.org/10.1038/s41551-018-0304-0
McAlpine, C. A., A. Johnson, A. Salazar, J. Syktus, K. Wilson, [et al.]. 2018. Forest loss and Borneo’s climate. Environmental Research Letters, 13 (4): 044009.
Medway, L. 1977. Mammals of Borneo. Field keys and annotated checklist. Monographs of the Malaysian Branch of the Royal Asiatic Society, 7: i–xii, 1–172.
Meijaard, E., V. Nijman, J. Supriatna. 2008. Nasalis larvatus. The IUCN Red List of Threatened Species 2008: e.T14352A4434312.
Meijaard, E., V. Nijman. 2000. Distribution and conservation of the proboscis monkey (Nasalis larvatus) in Kalimantan, Indonesia. Biological conservation, 92 (1): 15–24. https://doi.org/10.1016/S0006-3207(99)00066-X
Miller, D. B. R. G. Feddes. 1971. Global Atlas of Relative Cloud Cover, 1967–70: Based on Data from Meteorological Satellites. United States. National Environmental Satellite Service, USAF Environmental Technical Applications Center, 1–237.
Monge, M. J., R. García-Valdés, R. Sánchez-Fernández, M. Acevedo. 2018. Evaluating collinearity effects on species distribution models: An approach based on virtual species simulation. PLoS One, 13 (5): e0196463. https://doi.org/10.1371/journal.pone.0202403
Napier, J. R., P. H. Napier. 1967. A Handbook of Living Primates. Academic Press, London, 1–456.
Pacayán, S., F. D. Alfaro, W. Pérez-Martínez, I. Briceño-de-Urbaneja. 2019. Potential distribution model of Leontochir ovallei using remote sensing data. Revista de Teledetección, (54): 59–69. https://doi.org/10.4995/raet.2019.12792
Payne, J. 1988, Orang-utan Conservation in Sabah, WWF Malaysia. Project No. 96/86 and WWF International Project No. 3759. WWF Malaysia, Kuala Lumpur, 1–137.
Phillips, S. J., R. P. Anderson, R. E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190: 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
Punay, J.P., R. Andinisari. 2022. Review: land, cloud, and climate change (in focus: Borneo). Journal of Infrastructure Planning and Engineering (JIPE), 1 (1): 33–37. https://doi.org/10.22225/jipe.1.1.2022.33-37
Sabah ... 2019. Sabah Wildlife Department 2019. Proboscis Monkey Action Plan for Sabah 2019–2028. Kota Kinabalu, Sabah, Malaysia, 1–42.
Sakti, A., K. Adillah, C. Santoso, I. Al Faruqi, V. S. Adi Hendrawan, [et al.]. 2024. Modeling Proboscis Monkey Conservation Sites on Borneo Using Ensemble Machine Learning. Global Ecology and Conservation, 54: e03101. https://doi.org/10.1016/j.gecco.2024.e03101
Salter, R. E., N. A. MacKenzie, N. Nightingale, K. M. Aken, P. K P. Chai. 1985. Habitat use, ranging behaviour, and food habits of the proboscis monkey, Nasalis larvatus (van Wurmb), in Sarawak. Primates, 26: 436–451. https://doi.org/10.1007/BF02382458
Salter, R. E., N. A. MacKenzie. 1985: Conservation status of the proboscis monkey in Sarawak. Biological Conservation, 332: 119–132. https://doi.org/10.1016/0006-3207(85)90099-0
Sha, J. C. M., H. Bernard, S. Nathan. 2008. Status and Conservation of Proboscis Monkeys (Nasalis larvatus) in Sabah, East Malaysia. Primate Conservation, (23): 107–120. https://doi.org/10.1896/052.023.0112
Song, L., L. Estes. 2023. itsdm: Isolation forest-based presence-only species distribution modelling and explanation in r. Methods in Ecology and Evolution, 14: 831–840. https://doi.org/10.1111/2041-210X.14067
Swets, J. A. 1988. Measuring the Accuracy of Diagnostic Systems. Science, 240: 12851293. http://dx.doi.org/10.1126/science.3287615
Toulec, T., S. Lhota, H. Soumarová, A. Kurniawan, S. Putera, W. Kustiawan. 2020. Shrimp farms, fire or palm oil? Changing causes of proboscis monkey habitat loss Global Ecology and Conservation, 21: e00863. https://doi.org/10.1016/j.gecco.2019.e00863
Velazco, S. J. E., M. B. Rose, A. F. A. Andrade, I. Minoli, J. Franklin. 2022. flexsdm: An R package for supporting a comprehensive and flexible species distribution modelling workflow. Methods in Ecology and Evolution, 13 (8): 1661–1669. https://doi.org/10.1111/2041-210X.13874
Wang, X., Q. Xu, J. Liu. 2023. Determining representative pseudo-absences for invasive plant distribution modeling based on geographic similarity. Front. Ecol. Evol., 19 June 2023, Sec. Models in Ecology and Evolution, 11. https://doi.org/10.3389/fevo.2023.1193602
Wilson, A. M., W. Jetz. 2016. Remotely sensed highresolution global cloud dynamics for predicting ecosystem and biodiversity distributions. PloS Biology, 14 (3): e1002415. https://doi.org/10.1371/journal.pbio.1002415
Wolfheim, J. H. 1983.Primates of the World: distribution, abundance and conservation. Univ. Washington Press, Seattle & London, i–xxiii + 1–831.
Yeager, C. P., 1989. Proboscis monkey (Nasalis larvatus) feeding ecology. Int. J. Primatol., 10: 497–530. https://doi.org/10.1007/BF02739363
Zimmerman, J. K., S. J. Wright, O. Calderón, M. A. Pagan, S. Paton. 2007. Flowering and fruiting phenologies of seasonal and aseasonal neotropical forests: the role of annual changes in irradiance. Journal of Tropical Ecology, 23 (2): 231–251. https://doi.org/10.1017/S0266467406003890


 


to main page of journal >>>

created: 30.06.2024
updated: 18.07.2024

Locations of visitors to this page